miércoles, 3 de junio de 2009

CONOCIENDO DE LA FISICA

REPUBLICA BOLIVARIANA DE VENEZUELA
MINISTERIO DEL PODER POPULAR PARA LA EDUCACION
U.E. PROF. FERNANDO RAMIREZ
INDEPENDENCIA - YARACUY
CONOCIENDO DE LA FISICA
INTEGRANTES:
EDERLIN CARO
LUISBELKIS OJEDA
EDWIN OJEDA
AMBAR MAESTRE
AMALIANIS VILLANUEVA
5TO "B"
OLy MAR VALENZUELA


EL FISICO CHARLES COULOMBS

martes, 2 de junio de 2009

unidades agrarias

Unidades Agrarias
La hectárea (símbolo ha) y un hectómetro cuadrado (símbolo hm²) son la superficie que ocupa un cuadrado de un hectómetro de lado. Equivalen a 100 áreas ó 10.000 m². Su símbolo es ha (no Ha, y como todo símbolo, nunca lleva punto).
Otras equivalencias de la ha:Una hectárea equivale a:* 100 áreas* 1 hectómetro cuadrado* 10000 metros cuadrados* 1.000.000 decímetros cuadrados* 0,01 kilómetros cuadrados* 0,003861
020 millas cuadradas
DIFERENCIA DE POTENCIAL
Diferencia de potencial, también llamada tensión eléctrica, es el trabajo necesario para desplazar una carga positiva unidad de un punto a otro en el interior de un campo eléctrico; en realidad se habla de diferencia de potencial entre ambos puntos (VA - VB). La unidad de diferencia de potencial es el voltio (V). Ver Electricidad.

Un generador de corriente eléctrica permite mantener una diferencia de potencial constante y, en consecuencia, una corriente eléctrica permanente entre los extremos de un conductor. Sin embargo, para una determinada diferencia de potencial, los distintos conductores difieren entre sí en el valor de la intensidad de corriente obtenida, aunque el campo eléctrico sea el mismo. Existe una relación de proporcionalidad, dada por la ley de Ohm, entre la diferencia de potencial entre los extremos de un conductor y la intensidad que lo recorre (véase Circuito eléctrico). La constante de proporcionalidad se denomina resistencia del conductor y su valor depende de su naturaleza, de sus dimensiones geométricas y de las condiciones físicas, especialmente de la temperatura.
CAPACIDAD ELECTRICA
La capacidad o capacitancia es una propiedad de los condensadores. Esta propiedad rige la relación existente entre la diferencia de potencial existente entre las placas del capacitor y la carga eléctrica almacenada en este mediante la siguiente ecuación:

donde
C es la capacidad, medida en faradios (en honor al físico experimental Michael Faraday); esta unidad es relativamente grande y suelen utilizarse submúltiplos como el microfaradio o picofaradio.
Q es la carga eléctrica almacenada, medida en culombios;
V es la diferencia de potencial, medida en voltios.
Cabe destacar que la capacidad es siempre una cantidad positiva y que depende de la geometría del capacitor considerado (de placas paralelas, cilíndrico, esférico). Otro factor del que depende es del dieléctrico que se introduzca entre las dos superficies del condensador. Cuanto mayor sea la constante diléctrica del material no conductor introducido, mayor es la capacidad.
En la práctica, la dinámica eléctrica del condensador se expresa gracias a la siguiente ecuación diferencial, que se obtiene derivando respecto al tiempo la ecuación anterior.

Donde i representa la corriente eléctrica, medida en amperios.

Energía [editar]
La energía almacenada en un condensador, medida en julio, es igual al trabajo realizado para cargarlo. Consideremos un capacitor con una capacidad C, con una carga +q en una placa y -q en la otra. Para mover una pequeña cantidad de carga dq desde una placa hacia la otra en sentido contrario a la diferencia de potencial se debe realizar un trabajo dW:

donde
W es el trabajo realizado, medido en julios;
q es la carga, medida en coulombios;
C es la capacitancia, medida en faradios.
Es decir, para cargar un condensador hay que realizar un trabajo y parte de este trabajo queda almacenado en forma de energía potencial electrostática. Se puede calcular la energía almacenada en un capacitor integrando esta ecuación. Si se comienza con un capacitor descargado (q = 0) y se mueven cargas desde una de las placas hacia la otra hasta que adquieran cargas +Q y -Q respectivamente, se debe realizar un trabajo W:

Combinando esta expresión con la ecuación de arriba para la capacidad, obtenemos:

donde
W es la energía, medida en julios;
C es la capacidad, medida en faradios;
V es la diferencia de potencial, medido en voltios;
Q es la carga almacenada, medida en coulombios.
ASOCIACION DE CONDESADORES
Como todo dipolo, los condensadores se pueden conectar en serie, enparalelo o en asociación mixta.
Asociación de condensadores en serie.
Si, del negativo de la batería, fluyen hacia la armadura de la derecha, por ejemplo, tres electrones, estos inducen en la placa enfrentada a ella tres cargas positivas, es decir, la abandonan tres electrones, que irán a parar a la armadura siguiente, que, a su vez, inducirá una carga de +3 en la siguiente, étc.
La conclusión final es que la CARGA que adquieren los condensadores es LA MISMA para todos. q1 = q2 = q3 = q Las DIFERENCIAS DE POTENCIAL, en cambio, al estar en serie se SUMAN, y dicha suma será igual al potencial V de la batería. V = V1 + V2 + V3
Teniendo en cuenta que la relación entre la carga q y la tensión V de un condensador es su capacidad C
C = q / V
diremos que el potencial V que adquiere un condensador es:
V = q / C
por lo que diremos que en nuestro circuito tendremos:
V1 = q1 / C1 V2 = q2 / C2 V3 = q3 / C3
pero como ya hemos dicho que:
V = V1 + V2 + V3 = q1 / C1 + q2 / C2 + q3 / C3
como quiera que las cargas de los tres condenasdores en serie es la misma
q = q1 = q2 = q3 V = q x [ 1/ C1 + 1 / C2 + 1 / C3 ]
por lo que: V / q = 1/ CT = 1/ C1 + 1 / C2 + 1 / C3
Asociación de condensadores en paralelo.
En este caso, lo que es igual para todos los condensadores es, obviamente, la DIFERENCIA DE POTENCIAL, impuesta por el generador.
V = V1 = V2 = V3
En cambio, la CARGA TOTAL entregada por este debe ser igual a la SUMA de las cargas almacenadas en los condensadores
qT = q1 + q2 + q3 Como quiera que q = C x V y V = V1 = V2 = V3 tendremos para cada uno de los condensadores:
q1 = C1 x V
q2 = C2 x V
q3 = C3 x V Así pues :
qT = q1 + q2 + q3 = C1 x V + C2 x V + C3 x V = V x ( C1 + C2 + C3 )
qT / V = CT = C1 + C2 + C3

DIFERENCIA DE POTENCIAL ELECTRICO

DIFERENCIA DE POTENCIAL ELECTRICO
El potencial eléctrico en un punto es el trabajo que debe realizar una fuerza eléctrica (ley de Coulomb) para mover una carga positiva q desde el infinito (donde el potencial es cero) hasta ese punto, dividido por dicha carga. Dicho de otra forma, es el trabajo que debe realizar una fuerza externa para traer una carga unitaria q desde el infinito hasta el punto considerado en contra de la fuerza eléctrica, dividido por esa carga.
CAMPO ELECTRICO
Las cargas eléctricas no precisan de ningún medio material para ejercer su influencia sobre otras, de ahí que las fuerzas eléctricas sean consideradas fuerzas de acción a distancia. Cuando en la naturaleza se da una situación de este estilo, se recurre a la idea de campo para facilitar la descripción en términos físicos de la influencia que uno o más cuerpos ejercen sobre el espacio que les rodea.
La noción física de campo se corresponde con la de un espacio dotado de propiedades medibles. En el caso de que se trate de un campo de fuerzas éste viene a ser aquella región del espacio en donde se dejan sentir los efectos de fuerzas a distancia. Así, la influencia gravitatoria sobre el espacio que rodea la Tierra se hace visible cuando en cualquiera de sus puntos se sitúa, a modo de detector, un cuerpo de prueba y se mide su peso, es decir, la fuerza con que la Tierra lo atrae. Dicha influencia gravitatoria se conoce como campo gravitatorio terrestre. De un modo análogo la física introduce la noción de campo magnético y también la de campo eléctrico o electrostático.

LEY DE COULMB

LEY DE COLUMB
La ley de Coulomb puede expresarse como:
La magnitud de cada una de las fuerzas eléctricas con que interactúan dos cargas puntuales en reposo es directamente proporcional al producto de la magnitud de ambas cargas e inversamente proporcional al cuadrado de la distancia que las separa.
VALOR DE LA CONSTANTE K
K = 9.109 N.M2
C2
valores:
  • milicoulombs: 10-3C
  • microcoulmbs: 10-6C
  • nanocoulmbs: 10-9C
  • picocoulmbs: 10-12C

QUE ES UN COULMBS


De Coulomb es la unidad de carga eléctrica. Un Coulomb se define como la cantidad de carga transportada por un amperio de corriente en un segundo. Un Coulomb también puede ser definida como la cantidad de cargos necesarios para crear una voltios de diferencia de potencial en un condensador Farad. El símbolo del Coulomb es una C mayúscula.

INDUCCION ELECTROSTATICA

La electrostática es la rama de la física que estudia los fenómenos eléctricos producidos por distribuciones de cargas estáticas, esto es, el campo electrostático de un cuerpo cargado.
Históricamente, la electrostática fue la rama del
electromagnetismo que primero se desarrolló. Con la postulación de la Ley de Coulomb fue descrita y utilizada en experimentos de laboratorios a partir del siglo XVII, y ya en la segunda mitad del siglo XIX las leyes de Maxwell concluyeron definitivamente su estudio y explicación permitiendo demostrar cómo las leyes de la electrostática y las leyes que gobernaban los fenómenos magnéticos pueden ser estudiados en el mismo marco teórico denominado electromagnetismo.
La existencia del fenómeno electrostático es bien conocido desde la antigüedad, existen numerosos ejemplos ilustrativos que hoy forma parte de la enseñanza moderna; como el de comprobar como ciertos materiales se cargan de
electricidad por simple frotadura y atraen, por ejemplo, pequeños trozos de papel o pelo a un globo que previamente se ha frotado con un paño seco.

CONCEPTO DE LA FISICA


CONCEPTO DE LA FISICA


La física (del lat. physĭca, y este del gr. τὰ φυσικά, neutro plural de φυσικός) es una ciencia natural que estudia las propiedades del espacio, el tiempo, la materia y la energía, así como sus interacciones.
La física no es sólo una
ciencia teórica, es también una ciencia experimental. Como toda ciencia, busca que sus conclusiones puedan ser verificables mediante experimentos y que la teoría pueda realizar predicciones de experimentos futuros. Dada la amplitud del campo de estudio de la física, así como su desarrollo histórico en relación a otras ciencias, se la puede considerar la ciencia fundamental o central, ya que incluye dentro de su campo de estudio a la química, la biología y la electrónica, además de explicar sus fenómenos.
La física en su intento de describir los fenómenos naturales con exactitud y veracidad ha llegado a límites impensables, el conocimiento actual abarca desde la descripción de
partículas fundamentales microscópicas, el nacimiento de las estrellas en el universo e incluso conocer con una gran probabilidad lo que aconteció los primeros instantes del nacimiento de nuestro universo, por citar unos pocos conocimientos.


IMPORTANCIA DE LA FISICA


La física es la forma que encontró el hombre para estudiar la naturaleza, sosteniéndose en la base de las matemáticas. La importancia reside en intentar comprender (hasta donde se nos permite) como funciona la naturaleza. Mediante la física hemos logrado comprender que la misma fuerza que provoca la caída de una manzana de un árbol es la responsable de que la luna gire alrededor de la tierra, y ésta alrededor del sol. Que la luz es un campo electromagnético, que la materia está compuesta por ínfimas partículas elementales llamadas átomos. Que existen cuerpos con tanta masa concentrada que ni siquiera la luz escapa de ellos (agujeros negros). Que el universo está en expansión, etc, etc. Además, si no fuera por la física no existirían las computadoras, ni maquinas complejas gobernadas por computadoras en general. La industria no podría haberse desarrollado como lo está hoy en dia. No existirían los aviones ni los satélites. Ni siquiera podrias llevar los pantalones que tienes puestos.La física es maravillosa, pero cuidado: la naturaleza no está escrita en un lenguaje matemático como dicen. Las teorías que propone el hombre no es lo que la naturaleza dicta. La naturaleza no se basa en funciones para evolucionar. El hombre (con sus virtudes y limitaciones) creó una teoría para tratar de comprender la naturaleza y, por cierto, nunca sabremos como son sus engranajes. Sí llegaremos a tener unas buenas teorías que funcionen muy aproximadamente como se ven en los experimentos y que sean absolutamente compatibles entre ellas.


QUE ES UN ELECTRON


Tipo de partícula elemental que, junto con los protones y los neutrones, forma los átomos y las moléculas. Fue descubierto por J.J. Thomson. Los electrones intervienen en una gran variedad de fenómenos. El flujo de una corriente eléctrica en un conductor es causado por el movimiento de los electrones libres del conductor. La conducción del calor también se debe fundamentalmente a la actividad electrónica. En los tubos de vacío, un cátodo calentado emite una corriente de electrones que puede emplearse para amplificar o rectificar una corrienteeléctrica. Si esa corriente se enfoca para formar un haz bien definido, éste se denomina haz de rayos catódicos. Si se dirigen los rayos catódicos hacia un objetivo adecuado, producen rayos X; si se dirigen hacia la pantalla fluorescente de un tubo de televisión y producen imágenes visibles.Las partículas beta de carga negativa que emiten algunas sustancias radiactivas son electrones.Los electrones tienen una masa en reposo de 9,109 x 10-31 kg y una carga eléctrica negativa de 1,602 x 10-19 culombios. La carga del electrón es la unidad básica de electricidad. Los electrones se clasifican como fermiones porque tienen espín semientero; el espín es la propiedad cuántica de las partículas subatómicas que indica su momento angular intrínseco. La partícula de antimateria correspondiente al electrón es el positrón.


QUE ES UN AISLADOR


El aislador es el elemento que permite que el cable que conduce la electricidad pase por las torres, pero sin tocarlas. Las citadas torres tienen en sus brazos una especie de saliente, de forma redondeada, que es por donde pasa el cable eléctrico. Dicho saliente está recubierto por un material que, generalmente, suele ser cristal aunque se está sustituyendo por otros, como el composite, que hace las funciones de aislante. Con la tierra y el barrio caídos, este material se ensucia y pierde su función, por lo que el cable eléctrico toca la torre y se produce el salto -el corte de energía-. Por tanto, la labor que realizan ahora los técnicos de Iberdrola y de las contratas es mejorar esos aisladores -ya sea limpiándolos, ya sea cambiándolos-, a fin de que puedan realizar sin problemas su función.


QUE ES UN CONDUCTOR


Se llaman conductores eléctricos a los materiales que puestos en contacto con un cuerpo cargado de electricidad transmite ésta a todos los puntos de su superficie. Los mejores conductores eléctricos son los metales y sus aleaciones. Existen otros materiales, no metálicos, que también poseen la propiedad de conducir la electricidad como son el grafito, las soluciones salinas (ejem. el agua de mar) y cualquier material en estado de plasma. Para el transporte de la energía eléctrica, así como para cualquier instalación de uso doméstico o industrial, el mejor conductor es la plata pero es muy cara, así que el metal empleado universalmente es el cobre en forma de cables de uno o varios hilos. Alternativamente se emplea el aluminio, metal que si bien tiene una conductividad eléctrica del orden del 60% de la del cobre es, sin embargo, un material mucho más ligero, lo que favorece su empleo en líneas de transmisión de energía eléctrica en las redes de alta tensión. Para aplicaciones especiales se utiliza como conductor el oro.


QUE ES PROTON


En física, el protón (en griego protón significa primero) es una partícula subatómica con una carga eléctrica elemental positiva (1,602 × 10–19 culombios) y una masa de 938,3 MeV/c2 (1,6726 × 10–27 kg) o, del mismo modo, unas 1836 veces la masa de un electrón. Experimentalmente, se observa el protón como estable, con un límite inferior en su vida media de unos 1035 años, aunque algunas teorías predicen que el protón puede desintegrarse, es decir el que sus partículas pierdan la consistencia que poseen y como tal el átomo. El protón y el neutrón, en conjunto, se conocen como nucleones, ya que conforman el núcleo de los átomos.
El
núcleo del isótopo más común del átomo de hidrógeno (también el átomo estable más simple posible) es un único protón. Los núcleos de otros átomos están compuestos de nucleones unidos por la fuerza nuclear fuerte. El número de protones en el núcleo determina las propiedades químicas del átomo y qué elemento químico es.


COMO SE CONSTRUYE UN ELECTROSCOPIOS


En este experimento construiremos un electroscopio, que es un instrumento que permite detectar la presencia de un objeto cargado, aprovechando el fenómeno de separación de cargas por inducción electrostática.
Materiales
1 envase de vidrio tipo néctar con tapa.
10 cm de alambre de cobre.
Papel de aluminio.
1 clavo de 1 1/2 pulgadas.
Cuchillo cartonero.
1 cuchara plástica.
Tijera.
Chaleco de lana.